Cast Copper Rotors Efficiency Test Results

Darryl Van Son Van Son Consultants

Presentation to the Copper Development Association Annual Spring Meeting June 7, 2001 New York

What is 1% motor efficiency worth?

- Two-thirds (2/3) of all electricity is used to run motors
- Motors use 2 Trillion KWHr per year

1% better motor efficiency would save:

- 20 Billion KWHr per year
- \$1.4 Billion at 7 cents per KWHr
- Equivalent to 36.5 Million barrels of oil

Direct Copper to Aluminum Comparison

- 7 rotors tested in the same stator
- All tested on the same dynamometer
- Copper rotors compared to a large data base of previous motor tests
- Aluminum rotor motors averaged into a "standard" motor

IEEE – 112B Efficiency Test

- Iron core loss Magnetic losses in lamination stack, inductance and eddy current losses
- Stator resistance current losses in windings
- Rotor resistance current losses in rotor bars and end rings
- Windage and friction mechanical drag in bearings and cooling fans
- Stray load losses magnetic transfer loss in the air-gap between rotor and stator

IEEE Loss Segregation Test Results

	Watts Loss			
	A	<u>Cu</u>	<u>Diffi.</u>	<u>Percent</u>
Stator resistance	507	507	0	0%
Iron core loss	286	286	0	0%
Rotor resistance	<u>261</u>	157	-104	-40%
Windage / friction	115	72	-43	-37%
Stray load loss	<u>137</u>	<u>105</u>	<u>-32</u>	<u>-23%</u>
Total losses	1306	1127	-179	-14%

IEEE Performance Test (1)

		<u>Cu</u>	<u>Diffi.</u>	<u>Percent</u>
Efficiency	89.5%	90.7%	+1.2	+1.4%
Losses	10.5%	9.3%	-1.2	-11.4%

- Added 1.2 percentage points to the nameplate
- Reduced losses by 11.4%

 Al
 Cu
 Diff.
 Percent

 Power Factor
 81.5%
 79.0%
 +2.5
 -3.0%

Does not directly affect power usage

Power factor corrected on a whole plant basis

IEEE Performance Test (2)

	<u>Al</u>	<u>Cu</u>	<u>Diffi.</u>	<u>Percent</u>
Full Load RPM	1760	1775	+15	+1%
Slip	2.22%	1.37%	-0.85	-38%

- Slip is the difference between the full load speed of the rotor/shaft versus the synchronous speed of the rotating electrical field in the stator – 1800 RPM
- Copper rotor motor is a very "stiff" motor
- Implies a very good motor on variable speed drives for Servo-like performance
- Potential problems on Centrifugal loads
- Fans and pumps follow the Cube Law: 1% increase in speed = 3% increase in power input

IEEE Performance Test (3)

AlCuDiff.PercentTemperature rise64.9C59.5C-4.5C-7%

- Affects life expectancy of the motor
- For every 10 degrees C hotter a motor runs, life can be reduced in half
- With nearly 5 degrees C cooler running, Copper rotor motors could increase life expectancy by 50%
- Similar results have been seen in premium efficiency motors since their introduction 20 years ago

Torque Issues

Pound Feet

	A	<u>Cu</u>	<u>Diffi.</u>	Percent
Starting Torque	58.2	37.0	-21.2	-36%
Breakdown Torque	152.0	125.9	-26.1	-17%
Locked Rotor	69.0	65.0	-4.0	-6%

- Down from historically very high levels
- Still within NEMA minimum requirements
- Locked rotor torque still very good
- Can be corrected with modification to the rotor slot shape

Copper Rotor Consistency

- Copper rotor motors averaged 90.7% efficiency Range: 90.6% – 90.8%
- Copper rotor losses averaged 157 Watts Range: 153 Watts – 167 Watts
- Process variables had no predictable effect on final test results
- No balancing weights were required
- This is a very robust process with consistency not seen in current rotor die casting methods

Additional Implications


- Higher efficiency in the same stack length
- Same efficiency in a reduced stack length Offsetting material cost differences
- Some combination in between
- Elimination of balancing procedure in production
- Elimination of "safety factor" extra stack length to compensate for rotor irregularities

Motors designed around a Copper rotor

Tests of an "optimized" Copper motor

Rotor losses	-40%	
 Total losses 	-23%	
 Temperature rise 	-70%	
Efficiency	+1.6%	90.9% vs. 92.5%

Stator windings and iron core were modified from standard motor design to gain best possible results

20 HP Motor, Past and Future

Nameplate Efficiency In Percent

•
98
•
97
96
90
95
94
93
92
<u>52</u>
91
90
• 89
88
87

100

• 99

- Nirvana
 - Super Conducting
 - Amorphous Steel Laminations
 - Potential Copper Rotor
 - Today's Premium Efficiency
 - 1997 Energy Policy Act
 - Today's "Standard" Motor
 - Historic 1975