Die-Cast Copper Motor Rotor Mold Materials and Processing for Cost-Effective Manufacturing

March, 2001

Dr. John G. Cowie
Copper Development Association Inc.

Dr. Dale T. Peters
Consultant, Copper Development Association Inc.

Dr. Edwin F. Brush
Consultant, International Copper Association, Ltd.
Die-Cast Copper Motor Rotor

Program Initiation - Background

- Development requested by motor manufacturers
- Program members include:
 - Motor manufacturers
 - Die-Cast equipment manufacturers
 - High-temperature (mold) material suppliers
 - Copper industry technical & financial support
- Members all contributing to process development
Die-Cast Copper Motor Rotor

Participants

- ICA—major copper industry support
- US Dept. of Energy—contributed $425,000
- Motor Manufacturers
- Air Conditioning & Refrigeration Tech. Institute
- CDA members – alloy testing suggestions
- ThermoTrex—CVC Tungsten-coated Molybdenum
- Formcast—die casting technology capability
- CDA—program management & technical direction
Die-Cast Copper Motor Rotor

Objectives

- Development of Mold (Die) Materials and Processing for Cost-Effective Copper Motor Rotor Manufacturing
- Electrical Energy Efficiency Improvement
Die-Cast Copper Motor Rotor

Background

- Multiple analyses show additional 15% to 20% reduction in motor losses (input/output method) achievable with copper rotor compared to same motor design using aluminum
Die-Cast Copper Motor Rotor

Advantages to Motor Performance - Scenarios for Manufacturers and Users

- Improvement in motor electrical energy efficiency to reduce user operating costs
- Reduction in overall motor manufacturing cost if maintaining existing efficiency
- Reduction in motor weight
Die-Cast Copper Motor Rotor

Options for Improvement in Motor Energy Efficiency

- Create a “Super” premium efficiency motor product line
- Improve existing motor efficiency without major re-engineering by replacing current aluminum with copper rotor
Die-Cast Copper Motor Rotor

The Die Casting Process
Die-Cast Copper Motor Rotor

System Design at Formcast test facility

- 660 metric ton Buhler SC (independent computer controlled - closure & shot)
- Induction melting (15 kg of copper in 9 minutes for rotors – earlier design used 4 kg of copper per 2 minute cycle for material testing)
- High-temperature mold (die) materials and handling to achieve long life in service
Die-Cast Copper Motor Rotor

Phase I - Activities Completed

- “Test cavity” design for Die Materials testing Program — 1kg Cu through gate
- Extensive thermal modeling conducted
- Mold (Die) material analyses/run results:
 - H-13 (base case) — 750+ shots: severe heat checking after 20 shots
 - TZM/Anviloy/Tungsten — 980 shots
 - Inconels - 601, 617, 625, 754, 956 — 950 shots
Die Cast Copper Motor Rotor

Test Cavity Design and Copper Die Casting
Die-Cast Copper Motor Rotor

Major Program Innovation: Phase I Findings

- Multiple high-temperature mold (die) materials may perform adequately in various die locations—depending upon thermal stresses/load requirements
- Mold (die) material handling—preheat requirements are critical—to reduce thermal stresses and assure long die-life in-service
Die-Cast Copper Motor Rotor

Problem With Common Mold Materials:

- High temperature
- Substantial latent heat
- Thermal shock
- Thermal fatigue
- High operating temperature: Loss of strength
- In previous studies: steel molds lasted only a few shots
Die-Cast Copper Motor Rotor

Conductivity

<table>
<thead>
<tr>
<th>Shot Number</th>
<th>% IACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>97.8</td>
</tr>
<tr>
<td>11</td>
<td>95.2</td>
</tr>
<tr>
<td>438</td>
<td>96.8</td>
</tr>
<tr>
<td>600</td>
<td>99.7</td>
</tr>
<tr>
<td>800</td>
<td>99.4</td>
</tr>
</tbody>
</table>

Average: 98.8
Phase II: Prototype Motor Rotor Production

- Initial rotors produced December 1999
- Mold (die) inserts machined - 35 small copper rotors produced (April 2000): motor test results confirm loss reductions achievable as estimated
- 14 large copper rotors produced (May 2000)
- Designed die inserts for Air-Conditioning and Refrigeration Technical Institute’s hermetic motors - die-cast 37 medium sized rotors (January 2001)
- Die-cast 35 smaller rotors (January 2001)
Die-Cast Copper Motor Rotor

Large Die Set for Casting Rotors

- Middle Section
Die-Cast Copper Motor Rotor

Master Die on Pallet
Die-Cast Copper Motor Rotor

Die Cavity—Gates and Runner
Die-Cast Copper Motor Rotor

Arbor (Mandrel)
Die-Cast Copper Motor Rotor

Core stack being assembled
Die-Cast Copper Motor Rotor

Assembled Core Stacks
Die-Cast Copper Motor Rotor

Compressing Laminations
Die-Cast Copper Motor Rotor

Inserting Laminations (Core Stack)
Die-Cast Copper Motor Rotor

Inductotherm (Induction Melting) Furnace
Die-Cast Copper Motor Rotor

Copper Pellets in the Crucible
Die-Cast Copper Motor Rotor

Removing Molten Copper Crucible from Furnace
Die-Cast Copper Motor Rotor

Pouring Copper
Die-Cast Copper Motor Rotor

Furnace Controls
Die-Cast Copper Motor Rotor

Programming Die-Caster Computer Control
Die-Cast Copper Motor Rotor

Ejecting Rotor and Runner
Die-Cast Copper Motor Rotor

Extracting Rotor
Die-Cast Copper Motor Rotor

Quenching Rotor
Die-Cast Copper Motor Rotor

Fin Detail/Complete Fill on a Large Rotor
Die-Cast Copper Motor Rotor

Cross-section of a Rotor
Conclusions - Phase I - Test Cavity

- Trials Completed
- To Date: Inconel Alloy 617 Best Candidate
- Must Run Dies as Hot as Possible
- Copper Microstructure Exhibited Minor Defects
- Conductivity Very Good; Elimination of Iron in System Should Improve Conductivity
Die-Cast Copper Motor Rotor

Market Targets – Near Term – High Duty Cycle

- General Industrial & Commercial
- Air Cond. & Refrigeration – Hermetic & Fan
- Pump, Fan, Compressor – Ind. & Comm.
- Household Refrigerator, Machine Tools, Conveyors, & Other Fractional hp
- Aerospace (incl. Weight Reductions)
- Current High Efficiency Motors (including Manufacturing Cost Reductions)
Die-Cast Copper Motor Rotor

Copper Usage Annual Market Potential

- Worldwide – 30,000 tons Near Term;
 125,000 tons Longer Term
Copper Individual Motor Rotor Perspective

- Copper Usage in the Die-Cast Rotor for Individual Motors Evaluated Ranges from Approximately 40% to 55% of the Copper Magnet Wire Usage in Each Motor

- For Example – 15hp (~11kW) Uses 6.4 kg of Copper in Die-Cast Rotor (Replacing 2.8 kg of Al), and Contains 12.3 kg Copper in the Magnet Wire Windings
IEEE Test Results to Date

- 15% to 23% Reduction in Losses vs Al Die-Cast Rotor, Primarily in Rotor i^2R, Stray Load, & Friction/Windage
- Operating Temperatures Reduced Over 5 Degrees
- Torques also Reduced – Bar/Slot Redesign Required to Re-optimize for Maximum Benefit from Copper
Status of Phase II - Rotor prototypes

- Rotor Die Casting Trials for 4 motor companies completed
- Evaluation of Prototype Motor Performance: first results confirm energy efficiency improvements, as projected. Die-casting process proves to be robust
- Run of 200 to 500 Rotors for Production Motors planned
- Technology Transfer in 2001