A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Environment
- Sustainable Energy
- Electric Motors
- Copper Motor Rotor
- Introduction to Premium Efficiency Motors
- NEMA Premium® Motors Mean Big Savings
- A Systems Approach to Calculating Energy Savings
- MotorSlide Calculator™
- High Efficiency Motors & Transformers CD-ROM
- Motor Systems Training
- Creating a Motor Inventory, Repair/Replace Guidelines
- Motor Failure Policies and Purchasing Specifications
- Repair Specifications, and Preventive and Predictive Maintenance
- Mineral Producer Installing 150 Copper-Rotor Motors Rising Energy Costs Drive Upgrades, Rapid Payback Expected
- Copper-Rotor Motors + Variable Frequency Drives Maximize Savings at a Brass Mill
- Copper-Rotor Motors + Variable Frequency Drives Maximize Savings at Water Treatment Plant
- Motor Upgrades Help Cut HVAC Energy Costs
- Kodak Focuses on NEMA Premium®
- Skating Arena Cuts Energy Costs with Premium-Efficiency Motors
- Brass Mill Cuts Costs with NEMA Premium® Motors
- Cummins Engine Company Saves With Energy Efficiency Motors
- Energy Efficiency
- Energy Storage
- Renewables
- Current and Projected Wind and Solar Renewable Electric Generating Capacity in the Domestic Market
- Thermal Modeling of Electrical Conductors
- Copper and Wind Energy
- Driving America to Energy Independence, 30-mph Wind + Plug-In Hybrids = 100 mpg
- 100 Miles of Copper Cable Connects, Protects 4.6-MW Photovoltaic Solar Farm
- Transformers
- High-Efficiency Copper-Wound Transformers Save Energy and Dollars
- Transformer Life Cycle Cost
- High-Efficiency Utility Transformers Mean Lowest Total Owning Cost
- Temperature Rise and Transformer Efficiency
- Introduction to Transformer Losses
- Proper Transformer Sizing & Copper Windings
- Transformer Manufacturer Uses Only Copper
- Energy-Efficient Transformer Yields 156% ROI
- Latest in SE
- Electric Motors
- Mining & Recycling
- Green Properties of Copper
- Copper in Drinking Water
- Copper in the Natural Environment
Design Dies: Die Cost
Similar to a die-casting tool for making aluminum rotors, a copper rotor die-casting die consists of a number of cavity inserts assembled into a tool holder. Typical costs for the inserts and tool holder are discussed below.
7.8.1 Cost of the Cavity Inserts
To maximize die life when die-casting copper, it is recommended that the cavity inserts be fabricated from a nickel-based alloy, Haynes Alloy 230. Information about this alloy can be found in Die Materials. These inserts need to be pre-heated and operated at temperatures above 600°C.
Data generated in the late 1990's showed that the cost of fully machined cavity inserts made from Haynes Alloy 230 were about twice those of similar inserts machined from premium grade H-13 tool steel.
Since that time, however, improvements in die design have significantly reduced the size of the Haynes Alloy 230 cavity inserts required for a copper rotor die. For rotors used in motors up to 30 HP, the cavity inserts used for casting the two end rings now can be extremely small, only 7 to 17 kg in weight. Obviously, this significantly reduces any cost premium associated with using the Haynes Alloy 230.
7.8.2 Cost of the Die Holder
The design of the die holder for copper die-casting should be similar to that used for aluminum rotor casting. Therefore the costs should also be similar.
However, additional costs will be incurred for the extra cartridge heaters (shown below) and insulation required to pre-heat the cavity inserts to 600°C. Information about the cartridge heaters and insulation can be found in Die-Preheating and Control.