A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Environment
- Sustainable Energy
- Electric Motors
- Copper Motor Rotor
- Introduction to Premium Efficiency Motors
- NEMA Premium® Motors Mean Big Savings
- A Systems Approach to Calculating Energy Savings
- MotorSlide Calculator™
- High Efficiency Motors & Transformers CD-ROM
- Motor Systems Training
- Creating a Motor Inventory, Repair/Replace Guidelines
- Motor Failure Policies and Purchasing Specifications
- Repair Specifications, and Preventive and Predictive Maintenance
- Mineral Producer Installing 150 Copper-Rotor Motors Rising Energy Costs Drive Upgrades, Rapid Payback Expected
- Copper-Rotor Motors + Variable Frequency Drives Maximize Savings at a Brass Mill
- Copper-Rotor Motors + Variable Frequency Drives Maximize Savings at Water Treatment Plant
- Motor Upgrades Help Cut HVAC Energy Costs
- Kodak Focuses on NEMA Premium®
- Skating Arena Cuts Energy Costs with Premium-Efficiency Motors
- Brass Mill Cuts Costs with NEMA Premium® Motors
- Cummins Engine Company Saves With Energy Efficiency Motors
- Energy Efficiency
- Energy Storage
- Renewables
- Current and Projected Wind and Solar Renewable Electric Generating Capacity in the Domestic Market
- Thermal Modeling of Electrical Conductors
- Copper and Wind Energy
- Driving America to Energy Independence, 30-mph Wind + Plug-In Hybrids = 100 mpg
- 100 Miles of Copper Cable Connects, Protects 4.6-MW Photovoltaic Solar Farm
- Transformers
- High-Efficiency Copper-Wound Transformers Save Energy and Dollars
- Transformer Life Cycle Cost
- High-Efficiency Utility Transformers Mean Lowest Total Owning Cost
- Temperature Rise and Transformer Efficiency
- Introduction to Transformer Losses
- Proper Transformer Sizing & Copper Windings
- Transformer Manufacturer Uses Only Copper
- Energy-Efficient Transformer Yields 156% ROI
- Latest in SE
- Electric Motors
- Mining & Recycling
- Green Properties of Copper
- Copper in Drinking Water
- Copper in the Natural Environment
Conclusions
The annual savings from selecting the high-efficiency motor, more efficient wire, and high efficiency transformer are 3,420 kWh ($307.80) in the motor, plus 626 kWh ($56.34) in the wire, plus 560 kWh ($50.40) in the transformer; totaling 4,606 kWh ($414.54). The total cost premium is $337.50. The payback period, using the total systems approach, is thus only ten months.
One point to remember is that selection of a more efficient downstream load device, like our motor example, or even the wiring size, affects the losses in the other components of the energy delivery system upstream. Since these additional savings tag along at no added cost, you should take credit for them in your calculations whenever there could be an objection to purchasing the more efficient systems.