A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Tube, Pipe & Fittings
- Overview
- Key Copper Benefits
- TechCorner
- Copper Piping Systems and Acoustical Sealants
- Soldering and Brazing Explained
- Can Copper Tube Be Used in Steam and Steam Condensate Piping Systems?
- How to Prevent Corrosion of Copper Tube in Underground or Buried Applications
- Is It True That Electrolysis Can Cause My Copper Tube To Fail?
- Corrosion of Mixed Metal Fire Sprinkler Systems
- Why Do I Have Blue/Green Staining Of My Bathroom Fixtures
- Is There A Problem With Embedding Copper Tube In Concrete?
- Designing and Installing Copper Piping Systems
- Glossary of Technical Terms
- Copper Piping Systems and Acoustical Sealants
- Project Managers
- DIY: Do It Proper With Copper Video Series
- Applications
- Resources & Tools
- Benefits of Copper Plumbing
- Best Buy in Plumbing
- Working with Plumbing Subcontractors: Doing Your Homework
- Homebuyers Prefer Copper
- Installation Support
- Working with Plumbing Subcontractors: Problem Solving
- Working with Plumbing Subcontractors: Running the Job
- Selling with Copper: Showcasing Your Copper
- Selling to the Residential Market
- Selling with Copper
- Working with Plumbing Subcontractors: Role in Your Business
- Builder Satisfaction Program
- Copper Brochures
- Why Your Builder Chose Solid Brass Hardware
- Why Your Builder Chose Solid Brass Plumbing Fixtures
- Why Your Builder Chose Copper Communications Wiring
- Why Your Builder Chose Copper Flashing
- Why Your Builder Chose Copper Plumbing
- Why Your Builder Chose All Copper Wiring
- Why Your Builder Chose Flexible Copper Tube for Gas Distribution
- Why Choose Copper Plumbing
- Consumer Frequently Asked Questions (FAQs)
- Manufacturer's 50-Year Warranty
- Benefits of Copper Plumbing
- Installing Copper Piping Systems
- Technical References
- Guide Specifications on Plumbing
- Copper Tube Handbook
- Standard Tubes
- Selecting the Right Tube for the Job
- Design and Installation Data
- Technical Data
- Bending
- Joining Methods
- Fittings, Solders, Fluxes
- Soldered Joints
- Brazed Joints
- Flared Joints
- Roll Groove Joints
- Press-connect Joints
- Push-connect Joints
- Mechanically Formed Extruded Outlets
- Appendix - Organizations Listing
- Tube Handbook - Desktop App
- Soldering Procedure Specification
- Brazing Procedure Specifications
- Chillers
- Fire Sprinkler Systems Application Handbook
- How Copper Tube is Certified
- Lead Free Requirements of Safe Drinking Water Act
- Copper & Copper Alloy Tube, Pipe & Fittings Standards
- HVAC/R
- Copper DX Geothermal Heat Pumps
Design and Installation Data:
Snow Melting Systems
Snow-melting systems, installed in walks, driveways, loading platforms and other paved areas, are an efficient, economical means of snow, sleet and ice removal. To warm the surface, a 50-50 solution of water and antifreeze is circulated through copper tube embedded in the concrete or blacktop. Considerable savings can be realized at industrial plant installations where waste heat sources can be utilized.
In general, installation of snow melting coils is similar to that of floor panel heating coils. Selection of a sinuous or a grid pattern for a snow-melting system depends largely on the shape, size and installation conditions. Grids are good for square and rectangular areas; sinuous coils are usually preferred for irregular areas. The lower pressure loss with a grid configuration permits the use of smaller diameter tube saving material costs. Maximum economy is often realized with a combination of sinuous and grid-type coils.
Soft temper copper tube is suitable for both sinuous and grid-type coils; hard temper is better for larger grid coils and for mains. Soft tube facilitates the installation of sinuous coils because of its long lengths and ease of bending which reduce the number of joints to a minimum.
The solution temperature entering the snow melting coils should be 120°F to 130°F. To obtain a heating effect for snow melting of 100 BTU per hour per square foot with copper tube spaced on 12-inch centers in concrete (or 9-inch centers in blacktop), a maximum of 140 feet of 1/2-inch tube or 280 feet of 3/4-inch tube may be used. To obtain a heat input of 200 BTU per hour per square foot of snow area, a maximum of 60 feet of 1/2-inch tube or 150 feet of 3/4-inch tube may be used.
Tube in concrete should be located about 1-1/4 to 1-1/2 inches below the surface. The concrete should be reinforced with wire mesh. In blacktop, 1-1/2 inches minimum of compacted thickness of blacktop should cover the tube. The tube should be laid with care on compacted gravel, crushed stone or a concrete base. Allowances should be made for lateral movement where the tube enters and leaves the concrete or blacktop.
The same types of heaters and circulating pumps available for radiant heating installations are suitable for snow-melting panels. The panels also may be hooked up to a building's space heating system, if the system has sufficient capacity for the additional load and satisfactory precautions against freezing can be made.
