A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Tube, Pipe & Fittings
- Overview
- Key Copper Benefits
- TechCorner
- Copper Piping Systems and Acoustical Sealants
- Soldering and Brazing Explained
- Can Copper Tube Be Used in Steam and Steam Condensate Piping Systems?
- How to Prevent Corrosion of Copper Tube in Underground or Buried Applications
- Is It True That Electrolysis Can Cause My Copper Tube To Fail?
- Corrosion of Mixed Metal Fire Sprinkler Systems
- Why Do I Have Blue/Green Staining Of My Bathroom Fixtures
- Is There A Problem With Embedding Copper Tube In Concrete?
- Designing and Installing Copper Piping Systems
- Glossary of Technical Terms
- Copper Piping Systems and Acoustical Sealants
- Project Managers
- DIY: Do It Proper With Copper Video Series
- Applications
- Resources & Tools
- Benefits of Copper Plumbing
- Best Buy in Plumbing
- Working with Plumbing Subcontractors: Doing Your Homework
- Homebuyers Prefer Copper
- Installation Support
- Working with Plumbing Subcontractors: Problem Solving
- Working with Plumbing Subcontractors: Running the Job
- Selling with Copper: Showcasing Your Copper
- Selling to the Residential Market
- Selling with Copper
- Working with Plumbing Subcontractors: Role in Your Business
- Builder Satisfaction Program
- Copper Brochures
- Why Your Builder Chose Solid Brass Hardware
- Why Your Builder Chose Solid Brass Plumbing Fixtures
- Why Your Builder Chose Copper Communications Wiring
- Why Your Builder Chose Copper Flashing
- Why Your Builder Chose Copper Plumbing
- Why Your Builder Chose All Copper Wiring
- Why Your Builder Chose Flexible Copper Tube for Gas Distribution
- Why Choose Copper Plumbing
- Consumer Frequently Asked Questions (FAQs)
- Manufacturer's 50-Year Warranty
- Benefits of Copper Plumbing
- Installing Copper Piping Systems
- Technical References
- Guide Specifications on Plumbing
- Copper Tube Handbook
- Standard Tubes
- Selecting the Right Tube for the Job
- Design and Installation Data
- Technical Data
- Bending
- Joining Methods
- Fittings, Solders, Fluxes
- Soldered Joints
- Brazed Joints
- Flared Joints
- Roll Groove Joints
- Press-connect Joints
- Push-connect Joints
- Mechanically Formed Extruded Outlets
- Appendix - Organizations Listing
- Tube Handbook - Desktop App
- Soldering Procedure Specification
- Brazing Procedure Specifications
- Chillers
- Fire Sprinkler Systems Application Handbook
- How Copper Tube is Certified
- Lead Free Requirements of Safe Drinking Water Act
- Copper & Copper Alloy Tube, Pipe & Fittings Standards
- HVAC/R
- Copper DX Geothermal Heat Pumps
Copper/Alloy Tube & Pipe: Soldering and Brazing
The basic theory and technique of soldering and brazing are the same for all diameters of copper tube. The only variables are the filler metal and the amount of time and heat required to complete a given joint. The American Welding Society defines soldering as a joining process which takes place below 840°F and brazing as a process that takes place above 840°F but below the melting point of the base metals. In actual practice for copper systems, most soldering is done at temperatures from about 350°F to 600°F, while most brazing is done at temperatures ranging from 1100°F to 1500°F.
The choice between soldering or brazing generally depends on the operating conditions of the system and the requirements of the governing construction codes. Solder joints are generally used where the service temperature does not exceed 250°F, while brazed joints can be used where greater joint strength is required or where system temperatures are as high as 350°F.
Although brazed joints offer higher joint strength in general, the annealing of the tube and fitting which results from the higher heat used in the brazing process can cause the rated pressure of the system to be less than that of a soldered joint. This fact should be considered in choosing which joining process to use.
Although soldering and brazing are the most common methods of joining copper tube and fittings, they are often the least understood. It is this lack of understanding that can develop into poor installation techniques and lead to poor or faulty joints. Investigations into the common causes of joint failures revealed several factors contributing to faulty joints, including:
- Improper joint preparation prior to soldering.
- Lack of proper support and/or hanging during soldering or brazing.
- Improper heat control and heat distribution through the entire joining process.
- Improper application of solder or brazing filler metal to the joint.
- Inadequate amount of filler metal applied to the joint.
- Sudden shock cooling and/or wiping the molten filler metal following soldering or brazing.
- Pre-tinning of joints prior to assembly and soldering.
Although soldering and brazing operations are inherently simple, the deletion or misapplication of a single part of the process may mean the difference between a good joint and a failure.
Additional information on the various steps involved in soldering and brazing copper tube are given in the Soldering and Brazing Application Data Sheet (English version in pdf format, about 700kb), Soldadura & Soldadura Reforzada para Tubo de Cobre y Enlaces (Spanish version in pdf format, about 700kb) and in the Copper Tube Handbook. In particular, the following sections of the Handbook have specific information on soldering and brazing copper tube:
DIY Video Podcasts
Building & Architecture News
October '11: The Fall issue focuses on the benefits of copper at healthcare institutions. Read about a new copper HVAC system that makes AC systems more energy efficient; a medical campus that relies on copper for their state-of-the-art information network; copper trends in building and construction projects; how copper provides shielding for MRI systems to improve accuracy, and the importance of copper to ensure cleanliness, reliability and efficiency in medical gas systems.
Highlights
Learn about copper's 50-year warranty program
CDA Tube, Pipe and Fittings Council members:
Industry News: Selection of recent copper tube, pipe and fittings industry developments, technology advances, etc to keep you up to date.
The entire Copper Tube Handbook can be downloaded in pdf format [6 Mb].