A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Industrial
- Copper Motor Rotor
- Casting Alloys
- Copper Alloy Molds
- Applications
- Benefits
- Comparison of Mold Alloy Properties
- Whirlpool Uses Copper Alloy Mold
- Technical Paper - Cooling Prediction
- Technical Paper - Getting Heat Out of the Mold
- Copper Core With Copper Chill Plate Runs Better Than Water In Steel
- Copper-Alloy Core Solves Warpage
- Copper-Alloy Cores Reduce Cycle Time
- Wear Research To Compare Copper Molds To Steel
- ANTEC Report - Use of Copper Alloys to Reduce Mold Condensation Problems
- ANTEC Report - Impact of Fines Separation
- ANTEC Report - Comparison of Various Hard Coatings
- ANTEC Report - Understanding the Source of Reduced Mechanical Properties
- ANTEC Report - Resistance to Erosive Wear
- ANTEC Report - Undercutting Mold Performance
- ANTEC Report - Minimization of Gate Wear
- Applications
- Bronze Sleeve Bearings
- Selecting Bronze Bearing Materials
- Electronic Connector Design Guide
- Mold Design Guidelines
Yield Strength
Since it is physically difficult in practice to determine the exact point, (2) where the stress-strain curve departs from linearity, the point at which an arbitrary offset drawn parallel to the elastic modulus intersects the stress-strain curve is defined as the yield point, (3). The yield strength as commonly applied to copper and copper alloys is the stress which will produce an extension of either 0.20 percent or 0.50 percent under load. It is known as the Yield Strength at 0.20 percent extension or 0.50 extension. Slightly higher yield strengths are recorded for the same material using a greater offset.
Properties of Copper & Copper Alloys
Copyright © 2013 Copper Development Association Inc. All Rights Reserved.