A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Industrial
- Copper Motor Rotor
- Casting Alloys
- Copper Alloy Molds
- Applications
- Benefits
- Comparison of Mold Alloy Properties
- Whirlpool Uses Copper Alloy Mold
- Technical Paper - Cooling Prediction
- Technical Paper - Getting Heat Out of the Mold
- Copper Core With Copper Chill Plate Runs Better Than Water In Steel
- Copper-Alloy Core Solves Warpage
- Copper-Alloy Cores Reduce Cycle Time
- Wear Research To Compare Copper Molds To Steel
- ANTEC Report - Use of Copper Alloys to Reduce Mold Condensation Problems
- ANTEC Report - Impact of Fines Separation
- ANTEC Report - Comparison of Various Hard Coatings
- ANTEC Report - Understanding the Source of Reduced Mechanical Properties
- ANTEC Report - Resistance to Erosive Wear
- ANTEC Report - Undercutting Mold Performance
- ANTEC Report - Minimization of Gate Wear
- Applications
- Bronze Sleeve Bearings
- Selecting Bronze Bearing Materials
- Electronic Connector Design Guide
- Mold Design Guidelines
Other Requirements
Photo ©1998 AMP INC. The concepts, methods, and analyses in this design guide are intended to enable the selection of copper alloy strip that will provide the mechanical and physical properties necessary to meet initial connector requirements. They should assist in obtaining metal strip that will form the designed part without failure, guide the selection of alloys that have sufficient conductivity, and enable selection of alloys that can provide required contact forces. The metals selected can be manufactured into connectors that can be immediately tested to see if they meet initial design requirements. It is recognized that there are design requirements that cannot be immediately tested. But rather, the necessary tests may take months or even years. For example, exposures to elevated temperatures decrease the contact force over time through a mechanism known as stress relaxation, a metallurgical process. An example of a time-dependent chemical process is oxidation. When exposed to an oxidizing atmosphere, the resistance of a contact may, over time, rise to unacceptable levels. Topics in the next section in this guide address the manner in which various copper alloy strip metals can help the designer to manage these concerns.
Selection of Copper Alloys for Connectors
- Performance Requirements
- Electrical and Thermal Conductivity
- Discussion of Conductivity
- Conductivity of Alloy Classes
- Conductivity of Brass
- Conductivity of Phosphor Bronze
- Conductivity of Specialty Alloys
- Strength Versus Conductivity
- Modulus of Elasticity
- Contact Force
- The Brasses
- Phosphor Bronze
- Higher Strength Alloys
- Formability
- Directionality of Formability
- Other Requirements