A Copper Alliance Member
- Applications
- Resources
- Find Suppliers of Copper
- Technical Reference Library
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- Seminars, Workshops & Training
- Market Data
- Standards
- Properties
- Properties of Wrought and Cast Copper Alloys
- Properties of Copper
- Low Temperature Properties of Copper
- Cryogenic Properties of Copper
- Typical Uses of Copper Alloys
- Copper Compounds
- Microstructures of Copper Alloys
- Corrosion Protection & Resistance
- Fabrication Practices
- Powder Metallurgy
- Metallurgy of Copper-Base Alloys
- Questions?
- Consumers
- Education
- Environment
- Publications
- Newsletters
- Publications List
- Automotive
- Building Construction: Architecture
- Building Construction: Fire Sprinklers
- Building Construction: Home Builders' Marketing Materials
- Building Construction: Natural Gas
- Building Construction: Plumbing
- Electrical: Energy Efficiency
- Electrical: General
- Electrical: Power Quality
- Electrical: Telecommunications
- Industrial: Bronze Bearings
- Industrial: Cast Products
- Industrial: General
- Industrial: Machined Rod Products
- Industrial: Mold Alloys
- Properties / Standards
- Seawater
- Soldering / Brazing / Welding
- Special Publications
- Statistics / Directories
- About CDA
Industrial
- Copper Motor Rotor
- Casting Alloys
- Copper Alloy Molds
- Applications
- Benefits
- Comparison of Mold Alloy Properties
- Whirlpool Uses Copper Alloy Mold
- Technical Paper - Cooling Prediction
- Technical Paper - Getting Heat Out of the Mold
- Copper Core With Copper Chill Plate Runs Better Than Water In Steel
- Copper-Alloy Core Solves Warpage
- Copper-Alloy Cores Reduce Cycle Time
- Wear Research To Compare Copper Molds To Steel
- ANTEC Report - Use of Copper Alloys to Reduce Mold Condensation Problems
- ANTEC Report - Impact of Fines Separation
- ANTEC Report - Comparison of Various Hard Coatings
- ANTEC Report - Understanding the Source of Reduced Mechanical Properties
- ANTEC Report - Resistance to Erosive Wear
- ANTEC Report - Undercutting Mold Performance
- ANTEC Report - Minimization of Gate Wear
- Applications
- Bronze Sleeve Bearings
- Selecting Bronze Bearing Materials
- Electronic Connector Design Guide
- Mold Design Guidelines
Orientation Affects Stress Relaxation
Photo ©1998 AMP INC. There are slight differences in stress relaxation resistance depending on the orientation of the contact beam relative to the parent strip. If the beam length is perpendicular to the direction the metal strip was rolled, the bending stress in the beam is "transverse"; when the length is parallel, the stress is "longitudinal". One way to avoid confusion is to remember that a sample cut for a bad-way bend test has its length oriented transverse to the direction of roll; when bent, it's stressed in the same manner as a transverse stress relaxation test. In both these longitudinal and transverse orientations, the thickness of the beam is the thickness of the strip and the applied force is perpendicular to plane of the strip. Sometimes parts are stamped from strip such that the width of the beam is the thickness of the strip and the applied force lies in the plane of the strip. This has been referred to as "Z-direction"; both longitudinal and transverse Z-directions are used.
Relaxation resistance is not consistently better in one direction than the other, relative to how the part is oriented on the strip. Some alloys tend to be more resistant to stress relaxation in the longitudinal direction, while others perform somewhat better with a transverse orientation. Fortunately, orientation is of secondary importance, relative to alloy, temperature, and time. Differences in the loss of contact forces caused by orientation are rarely as much as ten percent and frequently are less than five percent, even after ten years of applied stress. It is always best, especially when stress relaxation is a critical factor, to obtain details of the particular behavior of the chosen alloy from the strip supplier before deciding upon how to orient the part on the strip.
Beyond the Basics - Performance Over Time
- Overview of Stress Relaxation
- Stress Relaxation Tests
- Alloy Selection for Stress Relaxation
- Time Affects Stress Relaxation
- Temperature Affects Stress Relaxation
- Initial Stress Level Affects Stress Relaxation
- Orientation Affects Stress Relaxation
- Temper Affects Stress Relaxation
- Fatigue Strength
- Factors Affecting Fatigue Strength
- Interface Corrosion
- Stress Corrosion Cracking (SCC)
- SCC Susceptable & Resistant Alloys
- Tin Coatings
- Tin Whiskers
- Copper-Tin Intermetallic Compounds
- Effect of Time and Temperature on Copper-Tin
- Contact Resistance When Using Tin Coatings
- Friction When Using Tin Coatings